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The ergodic theory and particularly the individual ergodic theorem were studied in many
structures. Recently the individual ergodic theorem has been proved for MV-algebras
of fuzzy sets (RieCan, 2000; Riean and Neubrunn, 1997) and even in general MV-
algebras (JureCkovd, 2000). The notion of almost everywhere equality of observables
was introduced by B. Riecan and M. Jureckova in Riecan and Jureckova (2005). They
proved that the limit of Cesaro means is an invariant observable for P-observables. In
this paper show that the assumption of P-observable can be omitted.
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1. INTRODUCTION

The ergodic theory and particularly the individual ergodic theorem were stud-
ied in many structures (Dvurecenskij and Riecan, 1980; Harman, 1985; Harman
and Riecan, 1992; Jureckova, 2000; Lutterova and Pulmannova, 1985; Petersen,
1983; Pulmannova, 1982; Riecan, 1982; RieCan, 2000; Rie¢an and Mundici, 2002;
Riecan and Neubrunn, 1997; Vrabel, 1988; Walters, 1975). Recently the individ-
ual ergodic theorem has been proved for M V-algebras of fuzzy sets (Riecan, 2000;
Riecan and Neubrunn, 1997) and even in general M V-algebras (Jureckova, 2000).

In classical probability space (€2, S, P) the individual ergodic theorem
(Petersen, 1983; Walters, 1975) guarantees the existence of a random variable
£* : Q — R satisfying the following conditions:

(1) &* is integrable and E(£*) = E(§),
(i1) % Z:’;Ol & o T — &* P-almost everywhere,
(iii) &* o T = &* P-almost everywhere,

where T :Q — Q is a measure preserving map, ie., T '(A) €S and
P(T~'(A)) = P(A) foreach A € S, & : Q — Ris an integrable random variable
with the mean value E(§).
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In connection with the generalization of property (iii) in the individual er-
godic theorem, B. Rie€an and M. JureCkova introduced the notion of almost
everywhere equality of observables (Riecan and Jureckovd, 2005). They assumed
the P-observables and proved that the limit of Cesaro means is an invariant ob-
servable. In this paper, we will show that the assumption of P-observable can be
omitted.

2. BASIC NOTIONS

In this section, we introduce the basic notions and theorems. They can be
found in (Riecan and Neubrunn, 1997). We consider the fuzzy quantum logic

F={f:2— (0,1); fis S — measurable}.

The corresponding notion to the notion of a random variable is an observable. An
observable is a mapping x : B(R) — F such that:

O x(R) =17,
(02) if AN B = ¢, then x(A U B) = x(A) + x(B),
(03) if A, / A, then x(A,) 7 x(A).

Instead of a probability measure in the Kolmogorov model there is considered
a state in F. A state is a mapping m : F — (0, 1) such that:

1) m(lF) =1
(82) if f + ¢ < 17, then m(f + &) = m(f) + m(g),
(83) if fu /' f,thenm(fy) /" m(f).

The next notion of the joint observable corresponds to the notion of the
random vector in classical probability theory. Let x, y : B(R) — F be two ob-
servables.

The joint observable of the observables x, y is a mapping & : B(R?) — F
satisfying following conditions:

JOn) AR = 1g,

JO2) if AN B =@, then h(AU B) = h(A) 4+ h(B),
Jo3) if A, / A, then h(A,) / h(A),

JO4) h(C x D) =x(C)-y(D), C, D € BR).

Recall that in F for each pair of observables x, y their joint observable exists
(see Riecan and Neubrunn, 1997 Theorem 8.3.2).

The transformation 7' : 2 — 2 is also replaced by a mapping t : F — F.

An m-preserving transformation is a mapping v : 7 — F satisfying the
following conditions:

(T z(lr) = 1x
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(T2) if f +g < 1r,thent(f + g) = t(f) + 1(g),
(T3) if fu /' [, thenz(f,) /7 ©(f)

(T4) =(f)-t(g) =7(f - 2),

(TS) =(f Ag) =T(f)AT(),

(T6) m(z(f)) = m(f).

The next important notion is notion of almost everywhere coincidence in-
troduced in Riecan and JureCkova (2005). Let m be a state on F. We say that
observables y, 7 : B(R) — F coincide m-almost everywhere,i.e. y = z m-almost
everywhere, if

m(h(A)) = 1

where A = {(u, v) € R%u = v} and h : B(R?) — F is the joint observable of

Y, 2.
This notion doesn’t depend on the choice of the joint observable /.

Theorem 2.1. Riecan and JureCkova (2005) The observables y,z coincide m-
almost everywhere if and only if

m (y((—00, u)) - z((u, 00))) = 0 and m (y((u, 00)) - z((—00, u))) = 0

for each u € R.

3. INVARIANT OBSERVABLES

In this section we prove that the limit of Cesaro means is an invariant ob-
servable for each integrable observable x. Our motivation is the individual ergodic
theorem (see Rie¢an and Neubrunn, 1997 Theorem 8.7.2).

Individual Ergodic Theorem. Let x be an integrable observable and 7 be an
m-preserving transformation. Then there is an integrable observable x* satisfying
the following conditions:

(1) EGx*) = E(x);
(i) L Y07 ' ox — x*m-almost everywhere.

First we start with the Kolmogorov construction.
Let h,, be the joint observable of observables x, T o x, ..., " o x. The system

{P, =moh,,neN)

is a consistent system of probability measures. By the Kolmogorov theorem there
exists a probability measure on (RY, B(R"Y)) such that

P(I1,'(4)) = Py(A)
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foreach A €, B(R"), n € N, where I, : BRY) — B(R") s the projection defined
by IT,(u)°) = (Ui, ..., u,)
Define the measure preserving transformation 7 : RY — RN by

T()Y) = )T, vi = uip
and the first coordinate random variable £ : RN — R by
E(uT) = ur.
Let g, : R" — R be a Borel measurable function defined by

n

1
gn(ula ~~-’un) - ;Zul

i=1

Theorem 3.1. RieCan and Neubrunn (1997) Let y,,% Z;:Ol tiox=h,o

gn—l, Ny = % Z:’:_Ol £ o T'. Then the sequence of observables (y,), converges m-
almost everywhere to an observable y and

P({u € R Tim n,(u) < 1)) = m (y((—00, 1))

foreacht € R.

Now we consider the sequence of observables t o x, 2ox,730x,...and
the Cesaro means defined by

l n
_ i _7 -1
z,,——g ttox =h,o0g,
g
i=

where 7, is the joint observable of the observables t o x, 2ox,...,T" o x.

Proposition 1. RieCan and JureCkova (2005) Put kyoi(ui, uz, ..., upe1) =
1 -1

S i = galua, ... Uny1) Then z, = hyyy 0 k).

Theorem 3.2. Riecan and Jureckova (2005) Let &, = % Yt EoT =n,0T.
Then the sequence of observables (z,), converges m-almost everywhere to an
observable z and

P({u € R lim £,(u) < 1)) = m (z((~00, 1))

foreacht € R Moreover z =t o y.

The following two theorems were proved for P-observables y, z, i.e. y(C N
D) < y(C) - y(D) and z(C U D) < z(C) - z(D) for each C, D € B(R) in paper
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(Riecan and Jureckova, 2005). We show that the assumption of P-observable can
be omitted.

Theorem 3.3. Let y, z be observables in F such thatz =toy,t:F — F be
the o -homomorphism with properties [T1]-[T6] and m be a state on F. Then for
allt € R it holds:

m (y((—00,1)) - z((t, 00))) = 0 and m (y((t, 00)) - z((—00, 1))) = 0
Proof:  Evidently

> 1
m (y(—0. 1) - 2((t, 00) = m (y((—oo, 0-\/z <<r o, oo))) .

n=1

Therefore it is sufficient to prove

m (y((—o0, 1)) - z({s, 00))) =0

fort < s.
Of course,

m (y((—00, 1)) - 2({s, 00))) < m (y((—00, 1)) A z({s, 00)))
and
m (y((=00, 1)) A z({s, 00))) = m (y((—=00, 1)) A (17 — 2((—=00, 5))) =
= m (y((=00, 1)) —m (y((—00, 1)) A z({s, 00)))
By Theorem 3.1 we have that

(1) m (y((—00, 1)) = P({u € RN lim, o0 n(u) < 1}) = P({u €
RY; n(u) < t}) where 7 is the random variable from individual er-
godic theorem.
Now we prove that
(2) m(y((—00, 1)) A z((—00,5)) = P({u € RN n(u) <t} N {u €
RY; £(u) < s5))

where & = lim,,_, o &,(#) is the random variable from individual ergodic theorem.
We know that

oo oo 00 k+i 1
V((=o0, 1) = \/ Y <<—oo,t - —))

p=1k=1i=1n=k p

2((—00,5)) = <o/ C//? [/+\jzm ((‘oo’ o l))

g=11=1 j=1m=l 4
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Therefore

m(y((=00, 1)) A z((=00, 5)))

o I
= lim lim lim lim lim lim m /\yn —00,1 — —
P—> 0 k—00i—>00g—>00 [—00 j—00 i p

Reel-)

m=l

Moreover

(A (=) A ((-0))

m=l

k+i 1 I+j 1
=m </\ h, ogn_l <<—OO, t— —)) A /\hm+1 Okn;_l,'_l <<—OO,S — —)))
4 q
n=k

m=lI
ki I+k
—m (/\ hu(A) A J\ hw(Bm)>

n=k m=Il

where w > k +i, w > 1+ j, Ay = 7, ),(8, (00,1 = D)), B = 71,1, (g,

(=00, s — é))) and ¢, s, p, q are constants.

By monotonicity of &, we obtain

k+i

hw(An)zhw (ﬂAn),l’l:k,...,k—i—i

n=k

hence

k+i k+i
I\ hu(An) = by, (ﬂ An)
n=k n=k

and similarly

I+j I+j
/\ 7w (Bu) = (ﬂ Bm> :
m=I

m=l
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By these relations we obtain

kti I+j k+i I+
N\ Pw(A) A N\ hw(Bu) = by ( An) A by (ﬂ Bm>
n=k m=l =

(A3 A ()
({0 () =+ (= () ()

k+i .
- P(ﬂ {M ERN;gn(ulm..,un)<t__}
p

n=k

I+j

1
mm {M € RN;karl(ulv '--’um+1) <s§—- 5})

m=I
hence

m (y((—oo, 1)) A z((—0o0, 5))) > 11m lim lim lim lim lim
—>00 k—00 i—>00 —>00 [—-00 j—>00

n=k

k+i 1
P MGRN;gn(ul,...,u,,)<t——}
(ol )

I+j

1
OU {u ERN;km+](u1,...,um+1) <s—5}>

m=1

=P UUﬂ{ueRN;nn(u)<t—§}

GGﬁ{ueRN;&,(u)<s—é}

q=

= P({u e RY;n(w) <t} N {u € RY; £(u) < s)).

D)

~
Il
3
Il
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By (1) and (2) we obtain
m (y((—00, 1)) - z2({s, 00))) < m (y((—00, 1)) A z({s, 00))) =
=m (y((—00, 1)) —m (y((—00, 1)) A z((—00, 5))) <
P(fu € RY; n(u) < 1}) —
— P{u e RY;nu) < 1} N {u e RY; £(u) < s})
= P({u e R n(u) < 1} N {u € R™; () > s})

IA

Since n = & = n o T P almost everywhere by individual ergodic theorem, then
P({u € RYinw) <1} N {u € R £@) = s}) = 0.
Hence

m (y((—00, 1)) - z({s, 00))) = 0

Theorem 3.4. y = z = t o y m-almost everywhere.

Proof: 1Tt follows by Theorem 2.1 and Theorem 3.3. O

4. CONCLUSION

The paper is concerned in ergodic theory for fuzzy quantum logic F. We
proved that the limit of Cesaro means is an invariant observable and show that the
assumption of P-observable is redundant in this case.
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